Exploiting Privileged Information from Web Data for Image Categorization
نویسندگان
چکیده
Relevant and irrelevant web images collected by tag-based image retrieval have been employed as loosely labeled training data for learning SVM classifiers for image categorization by only using the visual features. In this work, we propose a new image categorization method by incorporating the textual features extracted from the surrounding textual descriptions (tags, captions, categories, etc.) as privileged information and simultaneously coping with noise in the loose labels of training web images. When the training and test samples come from different datasets, our proposed method can be further extended to reduce the data distribution mismatch by adding a regularizer based on the Maximum Mean Discrepancy (MMD) criterion. Our comprehensive experiments on three benchmark datasets demonstrate the effectiveness of our proposed methods for image categorization and image retrieval by exploiting privileged information from web data.
منابع مشابه
Refining Image Categorization by Exploiting Web Images and General Corpus
Studies show that refining real-world categories into semantic subcategories contributes to better image modeling and classification. Previous image sub-categorization work relying on labeled images and WordNet’s hierarchy is not only laborintensive, but also restricted to classify images into NOUN subcategories. To tackle these problems, in this work, we exploit general corpus information to a...
متن کاملSimple and Efficient Learning using Privileged Information
The Support Vector Machine using Privileged Information (SVM+) has been proposed to train a classifier to utilize the additional privileged information that is only available in the training phase but not available in the test phase. In this work, we propose an efficient solution for SVM+ by simply utilizing the squared hinge loss instead of the hinge loss as in the existing SVM+ formulation, w...
متن کاملFunctionality-Based Web Image Categorization
The World Wide Web provides an increasingly powerful and popular publication mechanism. Web documents often contain a large number of images serving various different purposes. Identifying the functional categories of these images has important applications including information extraction, web mining, web page summarization and mobile access. This paper describes a study on the functional cate...
متن کاملCluster-Based Image Segmentation Using Fuzzy Markov Random Field
Image segmentation is an important task in image processing and computer vision which attract many researchers attention. There are a couple of information sets pixels in an image: statistical and structural information which refer to the feature value of pixel data and local correlation of pixel data, respectively. Markov random field (MRF) is a tool for modeling statistical and structural inf...
متن کاملMEDICAL IMAGE COMPRESSION: A REVIEW
Within recent years the use of medical images for diagnosis purposes has become necessity. The limitation in transmission and storage space also growing size of medical images has necessitated the need for efficient method, then image Compression is required as an efficient way to reduces irrelevant and redundancy of the image data in order to be able to store or transmits data. It also reduces...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014